Experiment 4 ## **Elements and the Periodic Table** ### **Purpose** - -To become familiar with the periodic table, and its organization, and the properties of elements including subatomic particles. - To observe the characteristic colors produced by certain metallic ions when vaporized in a flame and then to identify an unknown metallic ion by means of a flame test. - To combine two metals together to make an alloy. ### **Background** In this experiment, you will be looking at some elements in the laboratory. Some look different from each other, while others look similar. Elements can be categorized in several ways. In this experiment, you are going to group elements by similarities in their physical properties. Elements that appear shiny or lustrous are called **metals**. Metals are also usually good conductors of heat and electricity. Other elements called **nonmetals** are not good conductors of heat and electricity, are brittle, and appear dull (not shiny). Certain groups of elements have common names that you should become familiar with. These include the alkali metals (Group 1A), the alkaline earth metals (Group 2A), the halogens (Group 7A), and the noble gases (Group 8A). These groups, like all vertical groups on the periodic table, contain elements that are similar to one another. As we go across the periodic table, some of the properties of elements vary in a regular way. One property that does this is **atomic radius** which is the distance for the nucleus of an atom to its outermost electrons. Atoms are made of even smaller particles of matter called subatomic particles. A large number of subatomic particles are now known, but we are primarily interested in protons (p^+) , neutrons (n), and electrons (e^-) . Protons are positively charged particles (1+), electrons are negatively charged particles (1-), and neutrons are neutral (charge = 0). Within the atom, the protons and neutrons are tightly packed together in the **nucleus**. Electrons are outside of the nucleus and occupy the rest of the atom, which is mostly empty space. Atoms of a particular element always contain the same number of protons in the nucleus. The number of protons in an atom is called the **atomic number** (Z). For example, atoms of the element hydrogen always have one proton in their nuclei, while atoms of the next element, helium, always have two protons in their nuclei. Atoms of the element carbon similarly contain six protons, and atoms of iron have 26 protons. In a neutral atom, the number of protons is equal to the number of electrons. The sum of the number of protons and neutrons in the nucleus of an atom is called the **mass number** (A) of the atom. #### For an atom: Atomic number (Z) = number of protons= number of electrons Mass Number (A) = number of protons + number of neutrons In this activity you will also investigate the colors of flame produced by solutions of metallic ions. When a metallic ion is excited by heating it in a flame, the metal ions will begin to emit light. We will use our flame test to identify what metal ion is in an unknown sample. This technique of using certain metallic ions to color flames is widely used in pyrotechnics to produce the range of colors seen in a firework display. ### **Procedure** ### Part A. Comparison of Physical Properties of Elements. 1. Gather samples of the elements below and then complete the table below by writing the name, atomic number, and color for each element. Also indicate whether the element is shiny or dull, and whether it is a metal, nonmetal or metalloid. | Element | Symbol | Atomic
number | Color | Luster
(Shiny or dull) | Metal,
nonmetal or
metalloid | |------------|--------|------------------|-------|---------------------------|------------------------------------| | Aluminum | | | | | | | Carbon | | | | | | | Copper | | | | | | | Iron | | | | | | | Magnesium | | | | | | | Nickel | | | | | | | Nitrogen | | | | | | | Oxygen | | | | | | | Phosphorus | | | | | | | Silicon | | | | | | | Silver | | | | | | | Sulfur | | | | | | | Tin | | | | | | | Zinc | | | | | | ## **Predicting Properties Based on Location in the Periodic Table** 2. Use the location of the given elements in the periodic table to predict whether the elements listed below would be a metal or non-metal and shiny or dull. After you have completed your predictions, observe those same elements on the front counter to see if your predictions are correct. | observe those same elements on the none counter to see if your predictions are correct. | | | | |---|--------------------|----------------|---------------------| | Element | Metal or Nonmetal? | Prediction: | Prediction Correct? | | | | Shiny or Dull? | Yes or No | | Chromium | | | | | | | | | | Gold | | | | | | | | | | Lead | | | | | | | | | | Cadmium | | | | | | | | | #### **Parts of the Periodic Table** - 3. Using the colored pencils provided in the lab, shade. - a. the halogens blue - b. the alkali metals red - c. the noble gases purple - d. the alkaline earth metals orange - e. the transition metals yellow - d. Draw a dark line to separate the metals from the nonmetals #### Part B. Atoms and Subatomic Particles 1. Using your known regarding the parts of an atom, complete the following table with the correct atomic numbers, mass numbers, and number of protons, electrons, and neutrons for the neutral atom of each element Note: This table deals with atoms only- not ions. | Element | Symbol | Atomic
Number | Mass
number | Protons | Neutrons | Electrons | |---------|--------|------------------|----------------|---------|----------|-----------| | | Cu | | | | 34 | | | | | | 33 | | | 16 | | | | | | 11 | 13 | | | Iron | | | 58 | | | | | | Ti | | 47 | | | | 2. Complete the table below with the number of protons, electrons, neutrons, and complete atomic notation (showing the mass number and atomic number) for each neutral atom | Isotope name | Atomic notation (symbol with mass number | Protons | Neutrons | electrons | |--------------|--|---------|----------|-----------| | (Name-Mass) | and atomic number) | | | | | | 39 | | | | | | 19 K | | | | | | 80 | | | | | | 35 Br | | | | | | | 33 | 42 | | | Sulfur-31 | | | | | #### Part C. Flame test of metals and identification of an unknown metal **SAFETY:** Students must wear safety goggles at all times. Perform the following test in the fume hood WASTE DISPOSAL: All chemicals used must go in the proper waste container for disposal. #### **Procedure:** - 1. Place 10 drops of the solutions listed in the table below in a spot plate. - 2. Light the Bunsen Burner and adjust it so that it has a hot blue flame which may appear almost colorless. - 3. Clean a nichrome testing wire with cork handle by dipping it in hydrochloric solution (1.0 M HCl) for one minute. - 4. Dip the cleaned nichrome wire in the solutions to be tested. You should see a thin film or bubble of the solution adhering to the wire. - 5. Place the wire with sample in the hottest part of the flame (tip of the inner blue cone), and record the color produced. The color may not last long so look carefully. Element should produce only one major color. Clean the wire after each test by dipping it in the HCl solution. - 6. When you have tested all the known solutions and can distinguish the color of each metal ion, obtain unknown solutions and determine which metal ions are present by performing a flame test and comparing your observations to your previous data. | Solution | Metallic element that is producing color | Color of Flame | |-------------------|--|----------------| | SrCl ₂ | | | | BaCl ₂ | | | | CaCl ₂ | | | | KCI | | | | NaCl | | | | CuCl ₂ | | | | Unknown number | Color of Flame | Identity of metallic element that is producing color | |----------------|----------------|--| | | | | | | | | # **Post-Lab Questions** d. | 1. | Write | the | name | and | sym | bols | of | |----|-------|-----|------|-----|-----|------|----| |----|-------|-----|------|-----|-----|------|----| the noble gas in period 1 | a. | the halogen in period 4 |
 | |----|------------------------------|------| | b. | the alkali metal in period 2 |
 | | c. | the metalloid in period 3 |
 | 2. Calculate the average atomic mass of sulfur if 95.00% of all sulfur atoms have a mass of 31.972 amu, 0.76% has a mass of 32.971 amu and 4.22% have a mass of 33.967 amu. Show work. 3. On the graph paper on the next page, plot the atomic radius (y- axis) for elements 1-24 versus atomic number (x- axis) and then answer the question that follow. | Symbol | Atomic
Number | Atomic Radius (Picometers) | Symbol | Atomic
Number | Atomic Radius
(Picometers) | |--------|------------------|----------------------------|--------|------------------|-------------------------------| | Н | 1 | 53 | Al | 13 | 118 | | He | 2 | 31 | Si | 14 | 111 | | Li | 3 | 167 | Р | 15 | 98 | | Be | 4 | 112 | S | 16 | 88 | | В | 5 | 87 | Cl | 17 | 79 | | С | 6 | 67 | Ar | 18 | 71 | | N | 7 | 56 | K | 19 | 243 | | 0 | 8 | 48 | Ca | 20 | 194 | | F | 9 | 42 | Sc | 21 | 184 | | Ne | 10 | 38 | Ti | 22 | 176 | | Na | 11 | 190 | ٧ | 23 | 171 | | Mg | 12 | 145 | Cr | 24 | 166 | a. What trend do you notice in atomic radius as you go across a period on the periodic table? | Name | | | |---------|--|--| | INGILIC | | | # **Pre-Lab Assignment for Periodic Table and Elements** | 1. What is the symbol for the | e following elements? | | | |--|----------------------------|---|-----| | a. Magnesium | b. Pho | osphorus | | | c. Iron | d. Cop | pper | | | 2. For the following elemen | | | | | | Name | Atomic Number | | | a. F | | | | | b. P | | | | | c. K | | | | | d. Co | | | | | 3. What is the name of the <i>metals, alkaline earth metals</i> | | ollowing elements <i>(halogens, noble gases, alka</i> | ıli | | a. lithium | b. Ca | | | | c. chlorine | d. Ar | | | | 4. Classify each of the follow | ving as a metal, nonmetal, | or metalloid. | | | a. sodium | b. silicon | | | | c. nitrogen | d. copper | | | | | | | | 5. **Circle** the metals in the following group. C Ca Br Co Ni Ar Li Al O - 6. Are the following statements regarding electrons true or false? - a. (True/False) Electrons have a charge of 1-. - b. (True/False) If an atom has an equal number of protons and electrons, it will be neutral. - c. (True/False) Electrons are found in the nucleus of the atom. - 7. Are the following statement regarding protons true or false? - a. (True/False) Protons have the same mass as electrons. - b. (True/False) Protons are positively charged. - c. (True/False) Protons are found in the nucleus of the atom. - 8. Determine the number of protons and neutrons and each of the following | | Protons | Neutrons | Electrons | |-----------------------|---------|----------|-----------| | a. $\frac{41}{20}$ Ca | | | | | b. $\frac{55}{26}$ Fe | | | | | c. $\frac{23}{11}$ Na | | | | | d. $\frac{18}{8}$ O | | | | 9. Define the term "atomic radius"