## Experiment 17

## Finding the Percent of $\mathrm{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}$ <br> In Commercial Hydrogen Peroxide

## Purpose

- Use the ideal gas law to determine the percentage of hydrogen peroxide in a commercially available hydrogen peroxide solution
- Observe how a catalyst affects a reaction


## Background

Have you ever opened a container of milk after the expiration date and found that it had gone bad?
It is very easy to tell if milk has gone bad: it looks, smells, and tastes awful. The putrid odor lets you know a gas is being formed as it decomposes. Many items you purchase are not nearly as easy to tell if they have degraded. Some form a gas that is impossible to detect just by smelling it.

Hydrogen peroxide, a common household item that is used to clean minor cuts, is like this. The bottle you buy in the store says it contains $3 \%$ hydrogen peroxide, but it will very slowly decompose over time to form water and oxygen gas. We can't easily detect this, but we can use the ideal gas law and yeast to find this out how much has decomposed.

Since hydrogen peroxide forms oxygen gas when it decomposes, we can use the ideal gas law to check the percent hydrogen peroxide in a bottle of it purchased at the store. To find this out we need to take a small sample out of the bottle and accelerate its decomposition through using a catalyst


The ideal gas law is very valuable when dealing with gases since it establishes a relationship between temperature, pressure, volume, and amount of a gas

## PV = nRT

In this equation:

- $\mathbf{P}$ is the gas pressure in atmospheres
- $\mathbf{V}$ is the volume of the gas in liters
- $\mathbf{n}$ is the number of moles of the gas
- $\mathbf{R}$ is the constant value of $0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
- $\mathbf{T}$ is for the temperature of the gas in Kelvin.

In this experiment, we will use yeast to accelerate the decomposition of the hydrogen peroxide into water and $\mathrm{O}_{2}$ gas. Yeast contains the enzyme catalase, which is a catalyst for this reaction. You will add yeast to a known amount of hydrogen peroxide and quickly seal off the system so that the $\mathrm{O}_{2}$ gas formed is collected in a graduated cylinder. After measuring the total volume of gas produced, its temperature, and the atmospheric pressure, the ideal gas law can then be used to calculate how many moles of $\mathrm{O}_{2}$ gas is formed. We can do this by solving the ideal gas law equation for $\mathbf{n}$.

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}
$$

Once the number of moles of $\mathrm{O}_{2}$ gas is calculated, the percent of $\mathrm{H}_{2} \mathrm{O}_{2}$ present in the solution can be determined. To do this, you first need to calculate the theoretical number of moles of $\mathrm{O}_{2}$ there would be if the solution was $100 \%$ hydrogen peroxide. This can be found by using the following equation

$$
\text { Theoretical moles } \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}_{2} \text { used } x \mathrm{H}_{2} \mathrm{O}_{2} \text { density } x \quad \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}{34.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}} \quad x \quad \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}} \mathrm{H}_{2}
$$

For this experiment:

- $\mathbf{m L ~ H}_{2} \mathrm{O}_{\mathbf{2}}$ used is the volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ you actually use (approximately $2-4 \mathrm{~mL}$ )
- $\mathbf{H}_{2} \mathbf{O}_{\mathbf{2}}$ density is $1.02 \mathrm{~g} / \mathrm{mL}$
- $34.0 \mathbf{g ~ H}_{2} \mathrm{O}_{\mathbf{2}}=\mathbf{1} \mathbf{~ m o l ~} \mathbf{H}_{2} \mathrm{O}_{\mathbf{2}}$ (molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ )
- The molar ratio of $\mathrm{O}_{2}$ : $\mathrm{H}_{2} \mathrm{O}_{2}$ from the reaction which is $\mathbf{1} \mathbf{~ m o l} \mathbf{O}_{\mathbf{2}} / \mathbf{2} \mathbf{~ m o l ~} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$

The units in the entire equation cancel to give moles $\mathrm{O}_{2}$
The percent hydrogen peroxide can be found by dividing the actual number of moles of oxygen you calculated by the theoretical number of moles of oxygen there would be if hydrogen peroxide were $100 \%$. This number is then multiplied by $100 \%$.
$\% \mathrm{H}_{2} \mathrm{O}_{2}=\frac{\text { Actual moles } \mathrm{O}_{2}(\mathrm{n})}{\text { Theoretical moles } \mathrm{O}_{2}} \times 100$
This value can now be compared to the $3 \%$ hydrogen peroxide shown on the label to see if any decomposition has occurred.

## EXAMPLE.

Consider the following examples involving another common chemical reaction which also produces oxygen gas.

The deposition reaction of potassium chlorate $\left(\mathrm{KClO}_{3}\right)$ produces potassium chloride $(\mathrm{KCl})$ and oxygen gas $\left(\mathrm{O}_{2}\right)$

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

If 32.5 mL of $\mathrm{KClO}_{3}$ are used in the above reaction, how many moles of $\mathrm{O}_{2}$ will be produced? The density of KClO 3 is $2.34 \mathrm{~g} / \mathrm{mL}$

## Solution

Convert the milliliters of $\mathrm{KClO}_{3}$ to grams using its density and then to moles using its molar mass ( 122.55 grams $/ \mathrm{mole}$ ). Finally use the coefficients of the reaction to find moles of $\mathrm{O}_{2}$ produced.
$32.5 \mathrm{~mL} \mathrm{KClO3} \times \frac{2.34 \mathrm{~g} \mathrm{KClO} 3}{1 \mathrm{~mL} \mathrm{KClO} 3} \frac{1 \text { mole } \mathrm{KClO} 3}{122.55 \mathrm{~g} \mathrm{KClO} 3} \times \frac{3 \text { mole } \mathrm{O} 2}{2 \text { mole KClo3 }}=0.931{\text { mole } \mathrm{O}_{2}}^{2}$

## Equipment and Materials:

| 15 mL dropper | Plastic tubing | 10 mL graduated cylinder | 250 mL breaker |
| :---: | :---: | :---: | :---: |
| Fleischmann's Active Dry YEAST $\otimes$ All Nothral <br> Yeast |  | Weighting boat | 50 or 100 mL graduated cylinder |

## Procedure

1. Determine the current air temperature using the thermometer and record it in the Data Table.
2. Fill the $50-\mathrm{mL}$ (or 100 mL ) graduated cylinder completely with water.
3. Fill the $250-\mathrm{mL}$ beaker with about 200 mL of water.
4. Attach the dropper top to one end of the clear tubing.
5. Insert the opposite end of the tubing into the $50-\mathrm{mL}$ graduated cylinder.

Note: The next step will cause the water in the beaker to overflow; have paper towels ready to collect any spills.
6. Place thumb over opening of the $50-\mathrm{mL}$ graduated cylinder and invert into the beaker. See Figure 2 below for an illustration.

Figure 2.

7. Record the initial volume of gas in the graduated cylinder in Data Table 1. If no gas is present, the volume will be 0 . If you have more than 15 mL of air in the graduated cylinder, you will need to repeat this step.
8. Turn on the balance.
9. Place a weigh boat on the balance and tare it.
10. Weigh 0.1 gram of yeast into the weigh boat.
11. Pour the yeast into the empty $15-\mathrm{mL}$ dropper bottle.
12. Measure 3 mL of hydrogen peroxide in the $10-\mathrm{mL}$ graduated cylinder. Record the exact volume in the Data Table.
13. Prepare to quickly place the tubing with the dropper top on top of the dropper bottle.

Note: The top will need to be snapped in place immediately after the hydrogen peroxide is added.
14. Pour the hydrogen peroxide into the $15-\mathrm{mL}$ bottle.
15. Immediately snap the dropper top with tubing onto the bottle.
16. Allow the reaction to proceed until no additional gas has been generated for at least one minute. Swirl the bottle to make sure all of the hydrogen peroxide has reacted. At this point, the reaction can be considered complete.
17. Record the final volume of gas in the Data Table.
18. Calculate the change in volume in mL and record in the Data Table.
19. Remove the top from the bottle, pour the contents down the sink, and rinse the bottle three times with water.
20. Repeat the activity varying the volume of hydrogen peroxide in step 12 as listed in the table below.

| Trial 2 | Trial 3 |
| :---: | :---: |
| $2 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ | $3.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ |

## Data Table:

|  | TRIAL 1 | TRIAL 2 | TRIAL 3 |
| :--- | :--- | :--- | :--- |
| Temperature in <br> Celsius |  |  |  |
| Volume of $\mathbf{H}_{2} \mathbf{O}_{\mathbf{2}}$ <br> used (mL) |  |  |  |
| Initial volume of air <br> in graduated <br> cylinder (mL) |  |  |  |
| Final volume of air <br> and $\mathbf{O}_{2}$ in <br> graduated cylinder <br> after reaction $(\mathrm{mL})$ |  |  |  |
| Volume of $\mathbf{O}_{2}$ <br> collected $(\mathbf{m L})$ |  |  |  |

## Calculations

|  | TRIAL 1 | TRIAL 2 | TRIAL 3 |
| :---: | :---: | :---: | :---: |
| Pressure (given by instructor) |  |  |  |
| Pressure in atm |  |  |  |
| Temperature in Kelvin |  |  |  |
| Volume of $\mathbf{O}_{2}$ in Liters |  |  |  |
| R | $0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}$ | $0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}$ | $0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}$ |
| Actual moles of $\mathbf{O}_{\mathbf{2}}$ using PV = nRT |  |  |  |
| Theorical moles of $\mathrm{O}_{2}$ |  |  |  |
| percent hydrogen peroxide |  |  |  |

## Sample Calculations For Trial 1:

Show Calculations for trial 1 below
The goal is to find the percentage of hydrogen peroxide in the solution!
This can be found by working through the following steps:

1. Convert the pressure given by your instructor into atmospheres
2. Convert the temperature from ${ }^{\circ} \mathrm{C}$ to Kelvin $(\mathrm{K})$. Use the equation $\mathbf{K}={ }^{\mathbf{0}} \mathbf{C}+\mathbf{2 7 3}$.
3. Convert the volume of oxygen from mL to liters (L).
4. You are now ready to solve for the number of moles of $\mathrm{O}_{2}$. Be sure the units cancel so that you end up with only the moles of $\mathrm{O}_{2}$ left.

Actual number of moles of $\mathrm{O}_{2}(\mathrm{n})=$ $\qquad$ moles using PV = nRT
5. Calculate the theoretical number of moles of $\mathbf{O}_{\mathbf{2}}$ there would be if the hydrogen peroxide were $100 \%$ and not an aqueous solution.

Theoretical moles of $\mathrm{O}_{\mathbf{2}}=\mathrm{H}_{2} \mathrm{O}_{2}$ volume $* \mathrm{H}_{2} \mathrm{O}_{2}$ density $* \frac{\mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}} \quad * \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}$
6. Find the percent hydrogen peroxide.
$\% \mathrm{H}_{2} \mathrm{O}_{2}=\frac{\text { Actual moles } \mathrm{O}_{2}}{\text { Theoretical moles } \mathrm{O}_{2}} * 100 \%=\square \%$

Complete the calculations for the other trials. It is not necessary to show your work for the other trials however.

## Name

$\qquad$

## Post-Lab Questions

1. Was the calculated percentage of hydrogen peroxide close to the same as the percentage on the label?
2. How many moles of nitrogen gas $\left(\mathrm{N}_{2}\right)$ can be produced by the following reaction if 41 grams of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ are used?

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}->3 \mathrm{Mg}+\mathrm{N}_{2}
$$

## Name <br> $\qquad$ <br> Pre-Laboratory Assignment for <br> Finding the Percent of $\mathrm{H}_{2} \mathrm{O}_{2}$ in Commercial Hydrogen Peroxide

1. In the experiment, what gas will be produced by the decomposition of hydrogen peroxide?
2. What is the purpose of using yeast in this experiment's reaction?
3.Identify what each variable stands for in the ideal gas law $(P V=n R T)$
$P$ is the
$V$ is the
$n$ is the
$R$ is the
T is the
3. What units do the variables in PV $=n R T$ need to be in?
$P$ needs to be in the unit
$V$ needs to be in the unit
n needs to be in the unit
$R$ needs to be in the units
T needs to be in the unit
5.What is the molar mass of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ ?
4. How many moles of $\mathrm{O}_{2}$ were produced in a decomposition reaction of $\mathrm{H}_{2} \mathrm{O}_{2}$ if the pressure was 0.980 atm , the temperature was 298 K and the volume of $\mathrm{O}_{2}$ gas collected was 0.0520 L ?
5. If you decomposed 10.2 mL of $100 \% \mathrm{H}_{2} \mathrm{O}_{2}$, how many moles of $\mathrm{O}_{2}$ could you theoretically obtain?
